Mechanisms and polymorphism in recognition by intrinsically unstructured proteins

Monika Fuxreiter

Institute of Enzymology, Budapest

Intrinsically disordered proteins (IDPs)

Domain of life

Vucetic et al. (2002) Proteins 52, 573

IDPs – functional classification

Tompa (2002) TiBS 27, 527; (2005) FEBS Lett 579, 3346

IDP recognition

Benefits highly specific • high k_{on} (fast) facile • high *k*_{off} (reversible) p27^{Kip1}

regulatory functions : signal transduction, regulation of gene expression, cell-cycle

Tompa (2002) TiBS 27, 527; (2005) FEBS Lett 579, 3346

IDP recognition

Problem

large entropic penalty ↔ fast, specific binding

Dyson (2005) Nat Rev Mol Cell Biol 6, 197

IDP recognition models

Kinetics

IDP folding – coupled to binding

mechanism secondary structure in free and bound form

Induced folding \rightarrow independent

 $\begin{array}{ll} \text{Conformational} & \rightarrow \text{correlation} \\ \text{selection} \end{array}$

IUP	SwissProt code	Number of residues	Partner	Method	PDB code
CREB	P16220	28	CBP KIX	NMR	1kdx
DFF 45	O00273	89	DFF 40	NMR	1ibx
E-cadherin	P09803	57	β-catenin	X-ray	1i7x
FCP1	AAC64549.1*	21	TFIIF/RAP74	NMR	1onv
FnBPA	Q53971	24	Fibronectin	NMR	109a
IA ₃	P01094	29	Proteinase A	X-ray	1dpj
Killer toxin β chain	P19972	77	Killer toxin α chain	X-ray	1kvd
MAP tau	P10636	13	Pin1 WW	NMR	1i8h
MAX	P25912	86	DNA	X-ray	1an2
OCA-B (Bob-1)	Q16633	22	Oct-1 POU/DNA	X-ray	1cqt
p27 ^{Kip1}	P46527	69	CycA-Cdk2	X-ray	1jsu
p53	P04637	11	MDM 2	X-ray	1 ycq
Phe-tRNA synthetase α	P27001	79	Phe-tRNA synthetase β + tRNA	X-ray	1eiy
PKI	P04541	20	PKA	X-ray	1apm
RB3	Q9H169	91	tubulin	X-ray	1ffx
RNA pol II	P04050	17	mRNA capping enzyme	X-ray	1p16
SNAP 25	P13795-2	77	neuronal fusion complex	X-ray	1sfc
SV 40 virus coat protein	P03087	66	assembled coat	X-ray	1sva
TAF _{II} 230	P51123	67	TBP	NMR	1tba
TBS virus coat chain C	P11795	34	assembled coat	X-ray	2tbv
Tcf3	CAA67686*	41	β-catenin	X-ray	1g3j
Tcf4	Q9NQB0	24	β-catenin	X-ray	1jpw
Troponin I	P19429	17	Troponin C	NMR	11xf
Vitamin D3 receptor GenBank code	P11473	89	DNA	X-ray	1kb2

IUP_STR: IUP structures in the bound form IUP_SEQ: full length sequences of IUPs IUP_RAN: randomized IUP sequences

TEMPL_STR: template (partner) structures in the complex TEMPL_SEQ: template sequences TEMPL_RAN: randomized IUP sequences

GLOB_STR: globular proteins from PDB_select database

- IUPs are not random
- presage their final state

- modular architecture
- highest accuracy for helices

preformed elements: transient secondary structures

Benefits:

- reduce entropic penalty
- enhance complementarity

Experimental PSE examples

FlgM, p53, p27^{Kip1}, GCN4, CFTR, Measles virus N

Lacy et al. (2005) Nat. Struct. Mol. Biol 11, 358 Sivakolundu et al. (2005) J Mol Biol 353, pKID (CREB) – KIX (CBP)

Sugase et al. (2007) Nature 447, 1021 Turjanski et al. (2008) Plos Comp Biol 4, e1000060

Molecular recognition elements (MoREs)

 α -MoRE: fold to an α -helix upon binding Prediction:

- local order within larger disorder
- secondary structure preferences

PONDR VL-XT

physico-chemical features

Measles virus protein N

Oldfield et al. (2005) Biochemistry 44, 12454 Cheng et al. (2007) Biochemistry 46, 13468

Molecular recognition elements (MoREs)

 α -MoRE: fold to an α -helix upon binding

Oldfield et al. (2005) Biochemistry 44, 12454

Molecular recognition features (MoRFs)

MoRF: disordered segment that fold upon binding (α , β , ι) Database

- 372 segments derived from protein data bank (PDB)
- 10aa <, < 70 aa; partner > 100 aa
- include also S-S bonds and transmembrane segments

MoRF

MoRFcontaining proteins

globular proteins

Mohan et al. (2006) J Mol Biol 362, 1043

Csizmok et al. (2005) Biochemistry 44, 3955-64

Calpastatin (CSD1)

CD spectra

Csizmok et al. (2005) Biochemistry 44, 3955-64

MAP₂c

no long-range organisation only local, PPII conf

Csizmok et al. (2005) Biochemistry 44, 3955-64

PCS: transiently exposed site

- likely provide first contact point
- no secondary structures needed

Csizmok et al. (2005) Biochemistry 44, 3955-64

LM: short recognition motifs

The Eukaryotic Linear Motif resource for Functional Sites in Proteins							
server b	rowse	links	about	usage	news	help	
Functional si	te predicti	on			The ELM s	server	
Protein sequen Enter SWISS-PF Or paste the seq format):	ce ROT/TrEMBL	. identifier or	e sequence on	nber: y or FASTA	ELM is a reso functional sit proteins. Puta are identified i expressions) predictive pow rules and log to reduce the positives. Known ELM in predictions in ELM instance the motif is po are identified i ELM instance	urce for predicting tes in eukaryotic tive functional sites by patterns (regular . To improve the ver, context-based tical filters are applied amount of false instances and sequences similar to <u>e sequences</u> , where isitionally conserved, and displayed (see <u>e mapper</u>).	
Context inform	ation				Users are en context infor	couraged to supply mation in order to	
Species select from lis Homo sepiens or type in man	t: nually:	<u>-</u>			obtain relevan The current ve server provide including filter compartment clash (using th	nt predictions. ersion of the ELM es basic functionality ing by taxonomy, cell and globular domain ne SMART/Pfam	
(http://elm.eu.org)							

PPI networks

- short, low-complexity motifs
- low-affinity

Puntervoll et al (2003) Nucl Acids Res 31, 3625

- SH3 interaction motifs
- calmodulin binding sites
- 14-3-3 partners
- phosphorylation sites

GENERAL?

Bustos et al (2006) Proteins 63, 35 Radivojac et. al (2006) Proteins 63, 398-410 Beltrao et al (2005) PLoS Comput Biology 1, 202 lakucheva et al (2004) Nucl. Acids Res. 32, 1037

in disordered regions

average disorder profiles

Flanking regions are similar to IUPs

LMs are strange

••

LM: short, locally ordered segment embedded into a disordered region

IDP recognition models

IDP recognition – facile binding

- distinguished short motifs
- secondary structure elements
- large capture radius
- multiple contact sites

L kinetics

fly-casting

Shoemaker et al. (2000) PNAS 97, 8868

IDP recognition – consequences

- weak sequence requirements
- given aa composition

- less sensitive to sequence
- easy to turn on/off

structural and functional malleability

IDP recognition – consequences

folding coupled binding

restore structure-function paradigm

NO folding coupled to binding – disorder in bound form disorder paradigm

IDP recognition – consequences

Fuzziness: structural and functional ambiguity in bound form

static different bound structures can be determined polymorphic

Tcf4 - β -catenin mutagenesis studies

Glu-24, Glu-26, Glu-28, Glu-29 all effectively eliminate binding

alternative binding modes

Graham et al. (2001) Nat Struct. Biol. 8, 1048

dynamic interconvert between many structures clamp

absence of linker - no binding

presence of linker – K_d =4 μ M

Ste5 – Fus3

Bhattacharyya et al. (2006) Science. 311, 822

SF1 – UA2F⁶⁵

Selenko et al. (2003) Mol Cell 11, 965

dynamic interconvert between many structures random **IDP** partner T-cell receptor ζ chain T-cell receptor ζ chain Elastin Elastin

Pometun et al. (2004) J Biol Chem 279, 7982

extreme cases: sequence independence

Sigler et al. (1988) Nature 333, 210

IDP recognition

- short recognition motifs
- sequential and structural variability
- multi-functionality
- evolutionary benefits

Thank you

MRTN – CT 2005 019566

Bolyai fellowship

static different bound structures can be determined polymorphic

IDPpartnerNLSα-importinHsp90 MEEVDPpp5 TPR domainRyRDHPRCFTR R domainCFTRInhibitor 1Protein phosphatase 2PrionPrion amyloid

Tompa and Fuxreiter (2008) Trends in Biochem Sci 33, 2-8

dynamic clamp	interconver	t between many structures
IDP		partner
Ste5		Fus3p
Oct-1 TF		lg-κ promoter
NLS linker		α -importin
Cellulase E		cellulose
Myosine VI		Actin filament

Tompa and Fuxreiter (2008) Trends in Biochem Sci 33, 2-8

dynamic interconvert between many structures flanking **IDP** partner Hsp25 α -Acrystalline RNAP II CTD m-RNA maturation factors CREB KID CBP KIX Proline rich peptides SH3 domain IA₃p Aspartic acid protease SF1 splicing factor **U2AF**⁶⁵ SP1 TAD PIC

Tompa and Fuxreiter (2008) Trends in Biochem Sci 33, 2-8