Dynamism in protein evolution?

Cambridge - 21.11.11

Projects

- ID in DNA methyl-transferase evolution
- Dynamic protein-DNA recognition
- Kemp evolution
- Ser -> Thr in AP

Problem

tightly packed proteins

- ~ 50% destabilizing mutation
- ≥ 80% pathogenic mutations stability

Bershtein (2006), Nature 444, 929. Tokuriki (2008), PLoS Comp Biol 4, e1000002.

Problem

Stability change due to mutations ($\Delta\Delta G$)

Curr. Opin. Struct. Biol. (2009) 19, 1-9.

Problem

Tokuriki and Tawfik (2009), Science 324, 203.

Question

What structural properties facilitate evolution of new functions?

Can ID could be conserved?

MHaeIII

POD : pattern of order-disorder

Dosztanyi (2005) J. Mol. Biol. 347, 827

AA

AA

Can intrinsic disorder (ID) be conserved?

- in MHaeIII evolution
- in general?
- which features
- predictability

Can ID could be conserved?

in vitro evolution of MHaeIII Liat Rockah

AA

Differences vs natural variations in GGCC family

How stochastic they are?

How stochastic they are?

Ava

#positio n	mutation	pos.hit avg	pos.hit std	true hit avg	true hit std.			
L81	С	0.0158	0.0240	0.0000	0.0000	I 1.6%	-	-
H176	Y	1.0000	0.0000	0.8000	0.4000	Y 80.0%	l 20.0%	L 0.0%
S225	G	0.1334	0.2648	0.1334	0.2648	G 13.3%	-	-
R228	Н	0.0000	0.0000	0.0000	0.0000	-	-	-
Q231	R	1.0000	0.0000	0.0000	0.0000	H 100.0%	-	-
Q240	L	1.0000	0.0000	1.0000	0.0000	L 100.0%	-	-
Q245	Н	1.0000	0.0000	1.0000	0.0000	H 100.0%	-	-
N263	Y	1.0000	0.0000	0.8000	0.4000	Y 80.0%	l 20.0%	-

QuickTime¹⁴ and a decompressor are needed to see this picture.

What do they mean???

Liat Rockah's idea - stability

Foldex distributior

neutral drift - HTS

following Liat's idea - PODs

What do they mean???

global suppressors, stability

GuildTone^m and a decorpositer decorpositer are resolid to see this picture.

Disalign - POD alignment

Can we exploit?

(also combine with MSA)

Disalign

coloring scale is absolute.

--VID---VREIOSFPSADVLVGCVPCQGFSOCGAROSSRGVNYLYR-EFVRALKRIKFKAFIVENVSCMQRSDFRHLLNSQLCQFRLAGYRVNYRVID-VS-DFGVPQERKRLIFVGVRSDLGEV DYILGDISGLOSFPSAELLIGCYPCOGPSOGGARKADRKIN L-EFARALSKIKPKAFIVENVSCMVRRN-FEHLLKDOFKVFEEA-GY-TVSSQILNASHYGVSQDRKRIFIVGIRKDYG-DYRLOSVADIKSFPKAELLVGCYPCQGPSOGGAREAN IVENVSCHIRSTYRHLLDDQ1 JIRKDLGV. VQGDISKIDVSTIPSADILLGGWPCQGPSLAGP VGENVKOMLTLGNG-EI RNDLGIT VOGDIAKIDYSDVPDTDVITGGFPCQG AENVKGILTLGDG ODRWRVILYGFRKDLEVK NKE VGFIGGPPCOS IAENVPOIVSRO RERVEIVGYREDLNL LKDKOPSFFIAENVSOILF VKT-EL PCO DYIRILKSKOPKFFIAENVS OMLAN GAVONLLKMFDGC-GYDVTLTMANAKD-YGVAOERKRVFYIGFRKDL-EI -SDFKVPODRORVFFVCIRKDLGF OFIRILEAKOPKEETAENVSCMLIGKHTEALEGIKELERNA-GIGYELSE OMLNASDYNVPODRKRVFFIGIRKDLNF REDLGI DGTIGGPPCOS LKELKPKFFT AENVE IMT.AC K-DYCVAOERLRVF IGFRRDLKIN KNKOPKVFTAENVS IMLANRHSDAVKSILNMFDDC-GYDVTVN TEC GPPCH KDLAIN TKI PCO RDKSPKFFT AENUK CMMAKEHNKAVOSIISOFNKA-CYDVFTHLLNAS-DYCVAODRKEI REDLNIC ABNVK CMMAOR HNKAVOEF TOEFDNA-GYDVH I ILLNAN-DYGVAODRKRVFY TKG RELNIN RGKLFYEYIRILKDIQPKFFI<mark>AENVK</mark>GMLSKRNTEAVKDIIKEFEEA-GYNVFIKLLNAF-DYGVAQDRERVFYVGFRKDLNIS IKKDIREILSEE PCOST 90 ... coloring scale is absolute.

Mtases - GGCC specificity

A coarse-grained structural feature, related to dynamics, is preserved in evolution

Function? Mechanism? Significance?

(mere stability?)

What does it mean???

given dynamical characteristics (even ID) are essential for given functions

might seem trivial, but

- likely to be ubiquitous within the transcription machinery
- new approach to fine-tune DNA binding
- PT modifications
- multimerization

TiBS (2011) 36, 415-423.

QuickTime[™] and a decompressor are needed to see this picture.

Röthlisberger, D. et al., (2008), Nature 453: 6879

 $\Delta g^{\ddagger} \exp.$ (kcal/mol) Δg^{\ddagger} simulation 19,0 20,1 17,0 17,8 natív evolvált nem katalizált

Reakciókoordináta

400

600

800

XDynBP programme

 $\lambda = \Delta g_2(RS) - \Delta g_2(PS)$

Improvement in reorganisation energy ~ 40 kcal/mol

closely related to protein dynamics

Individual residue contributions to reorganisation energy

Individual residue contributions to reorganisation energy

in R7 the reorganisation energy is optimized

15

Can we exploit ?

Idea: screening for improving reorganisation energy

screening algorithm

1. generation of mutants on RS and PS (TS) conformational ensemble

- 2. optimization
- 3. calculation of REORG energy and average

screening using all residues within 12 Å from substrate

Comparison to Olga's data

 $\Delta\Delta G_{reorg}$ ~0 or << 0

All mutation are either neutral for the reorganization energy or improve it

QuickTime™ and a decompressor are needed to see this picture.

K221A

$$\frac{k_{kat}(mut)}{k_{kat}(nat)} \cong 3$$

 $\Delta \Delta g^{\ddagger}_{reorg}$ = -2,3 kcal mol⁻¹

Khersonsky, JMB (2010) 396, 1025.

netta con

reorganisation energy seems to be an important factor in enzymatic evolution

Wang & Kantrowitz (2006) Prot. Sci. 15, 2395

S102/T102 transition state

structure (superimposed)

Enzyme	Attacking step		Departure gro	of leaving oup	$\Delta g^{\ddagger}(\text{calc.})$	$\Delta g^{\ddagger}(\exp.)$	
	ΔG	$\varDelta g^{\ddagger}$	ΔG	$\varDelta g^{\ddagger}$			
native	-11.2	11.1	13.9	26.0	14.8	15.2	
S102T	-13.7	11.5	33.9	38.1	24.4	20.2	
D369N	-4.0	18.4	-1.0	22.3	18.3	18.0	
D369A	2.2	25.7	6.0	23.5	25.7	20.2	
E322D	-10.0	12.1	14.5	27.2	17.2	18.9	
R166K	-8.6	12.8	12.6	26.1	17.5	17.6	

collecting configurations at the stationary regions

compensatory mechanisms related to protein dynamics

Dynamism in protein evolution

- specific POD features related to function
- conserved ID features in DNA recognition
- reorganisation energy opt. along enzyme evolution
- compensatory mechanisms related to dynamics

Perspectives

thanks

Institute of Enzymology

Rita Pancsa Grzegorz Papaj Anikó Lábas Eszter Szabó Letif Mones István Simon

Weizmann Institute of Science

Liat Rockah

Olga Khersonsky

Misha Shoskine

Eynat Dellus

Ágnes Tóth-Petróczy

Nobuhiro Tokuriki

Dan Tawfik

AP: Protocol of changing residues

3. Calculate the new interaction energy of each mutant with the QM zone (*third approx.: calculation of the electrostatic energy on the mapping potential*)

4. Selection criterion:

$$\Delta \Delta E_{S102 \rightarrow S102T}^{el} \mathbf{R} = \Delta E_{S102T,RS \rightarrow TS}^{el} \mathbf{R} - \Delta E_{S102,RS \rightarrow TS}^{el} \mathbf{R} = \langle E_{S102T}^{el} \mathbf{R} \rangle_{TS} - \langle E_{S102T}^{el} \mathbf{R} \rangle_{RS} - \langle E_{S102}^{el} \mathbf{R} \rangle_{TS} - \langle E_{S102}^{el} \mathbf{R} \rangle_{RS}$$

IDP recognition - facile binding

distinguished short motifs

- secondary structure elements
- large capture radius
- multiple contact sites

fly-casting

Shoemaker et al. (2000) PNAS 97, 8868

Function and evolution

IDPs - from an evolutionary perspective

Fuzziness - perspectives

- functional complexity
- multiple binding sites
- sequence insensitivity
- evolution of new functions

thanks

Peter Tompa Agnes Toth-Petroczy

Disalign - POD alignment

in combination with sequence constraints

yeast Ure2

OuickTime™ and a

Ross (2004), Mol Cell Biol 24, 7206

phoshate contacts

TBP -DNA

water

Trp repressor -DNA

Classical theme:

Spolar (1994) *Science* 263, 777

Love(1995) Nature 376, 791

IDP recognition - facile binding

Ets-1 transcription factor UNICKTIMETM and a decompressor are needed to see this picture.

- does not gain structure in complex
- no sec. str. increase upon phosphorylation

Pufall (2005) *Science* 309, 142 Lee (2005) *J Mol Biol* 382, 1014 QuickTime[™] and a decompressor are needed to see this picture.

decreasing flexibility

Model	IDP	ID region	Conservation	Posttranslatio nal
Conformational selection		<u> </u>		
	Max	NTD CTD	*	phosph orylation
	MeCP2	NTD I D CTD		
	TDG	CTD		acetylation
	Neurogenin	Basic motif		
	ApLLP	NTD,CTD	*	
Flexibility modulation				
	Ets-1	SRR		phosph orylation
	SSB	CTD	*	
Competitive binding				
	PC4	NTD		phosph orylation , acetylati on
	FACT	NTD CTD	*	phosph orylation
	HMGB1	CTD	*	phosph orylation
	Ubx	l1, l2, R	*	
	DSS1/Brh2	1-70		
	NKX3.1	AD, SI	*	phosph orylation
	PPAR-g	NTD		
	UvrD	CTD	*	
	b-telomere	CTD		phosph orylation
Tethering				
	Oct-1	Linker	*	
	RPA	IULD	*	phosph orylation
	KorB	NTD, link er		

Fuzzy protein-DNA complexes

bound ID affects affinity/specificity

structural + biochemical evidence

Fuxreiter (2011) TiBS

Conformational selection

ID NTD, CTD: promote formation of recognition helices Max transcription factor

Tethering

ID linker: tether globular domains to DNA Oct-1

Competitive binding

ID region: competition between protein-DNA and intra- or intermolecular protein-protein interactions HMG-B

Flexibility modulation

ID region: tunes dynamic properties of the recognition region

Dynamic DNA readout

- Conformational selection
- Flexibility modulation
- Tethering
- Competitive binding

Regulatory tools

- protein-protein interactions
- post-translational modifications
- alternative splicing

Ultrabithorax homeotic transcription factor

conserved ID character

context-specific regulation

Ultrabithorax homeotic transcription factor

general - Pfam database

POD RMSD

strutcure conservation POD 0.8 0.6 0.4 secondary structure 0.2 0 0.4 0.5 0.8 0.9 0.3 0.6 0.7

conservation of topology

sequence conservation

conservation of topology

sequence conservation

Pfam - POD realignment

(Balibase benchmarks)